Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 21048, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702948

RESUMO

Viruses need cells for their replication and, therefore, ways to hijack cellular functions. Mitochondria play fundamental roles within the cell in metabolism, immunity and regulation of homeostasis due to which some viruses aim to alter mitochondrial functions. Herein we show that the nucleoprotein (NP) of arenaviruses enters the mitochondria of infected cells, affecting the mitochondrial morphology. Reptarenaviruses cause boid inclusion body disease (BIBD) that is characterized, especially in boas, by the formation of cytoplasmic inclusion bodies (IBs) comprising reptarenavirus NP within the infected cells. We initiated this study after observing electron-dense material reminiscent of IBs within the mitochondria of reptarenavirus infected boid cell cultures in an ultrastructural study. We employed immuno-electron microscopy to confirm that the mitochondrial inclusions indeed contain reptarenavirus NP. Mutations to a putative N-terminal mitochondrial targeting signal (MTS), identified via software predictions in both mamm- and reptarenavirus NPs, did not affect the mitochondrial localization of NP, suggesting that it occurs independently of MTS. In support of MTS-independent translocation, we did not detect cleavage of the putative MTSs of arenavirus NPs in reptilian or mammalian cells. Furthermore, in vitro translated NPs could not enter isolated mitochondria, suggesting that the translocation requires cellular factors or conditions. Our findings suggest that MTS-independent mitochondrial translocation of NP is a shared feature among arenaviruses. We speculate that by targeting the mitochondria arenaviruses aim to alter mitochondrial metabolism and homeostasis or affect the cellular defense.


Assuntos
Arenaviridae/metabolismo , Boidae/virologia , Corpos de Inclusão Viral/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Nucleoproteínas/metabolismo , Animais , Arenaviridae/classificação , Arenaviridae/genética , Chlorocebus aethiops , Corpos de Inclusão Viral/genética , Mitocôndrias/genética , Nucleoproteínas/genética , Células Vero
2.
Biomed Res Int ; 2021: 1807293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34409100

RESUMO

Human Parainfluenza Virus Type 3 (HPIV3) is one of the main pathogens that cause acute lower respiratory tract infections in infants and young children. However, there are currently no effective antiviral drugs and vaccines. Herein, we found that a natural compound, curcumin, inhibits HPIV3 infection and has antiviral effects on entry and replication of the virus life cycle. Immunofluorescence and western blotting experiments revealed that curcumin disrupts F-actin and inhibits viral inclusion body (IB) formation, thus inhibiting virus replication. Curcumin can also downregulate cellular PI4KB and interrupt its colocalization in viral IBs. This study verified the antiviral ability of curcumin on HPIV3 infection and preliminarily elucidated its influence on viral replication, providing a theoretical basis for antiviral drug development of HPIV3 and other parainfluenza viruses.


Assuntos
Curcumina/farmacologia , Corpos de Inclusão Viral/metabolismo , Vírus da Parainfluenza 3 Humana/fisiologia , Infecções por Respirovirus/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Células A549 , Actinas/metabolismo , Animais , Cães , Regulação para Baixo , Redução da Medicação , Células HeLa , Humanos , Corpos de Inclusão Viral/efeitos dos fármacos , Corpos de Inclusão Viral/genética , Células Madin Darby de Rim Canino , Vírus da Parainfluenza 3 Humana/efeitos dos fármacos , Infecções por Respirovirus/tratamento farmacológico , Infecções por Respirovirus/genética , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
3.
Biochim Biophys Acta Mol Cell Res ; 1867(12): 118831, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32835749

RESUMO

Viruses reshape the organization of the cell interior to achieve different steps of their cellular cycle. Particularly, viral replication and assembly often take place in viral factories where specific viral and cellular proteins as well as nucleic acids concentrate. Viral factories can be either membrane-delimited or devoid of any cellular membranes. In the latter case, they are referred as membrane-less replication compartments. The most emblematic ones are the Negri bodies, which are inclusion bodies that constitute the hallmark of rabies virus infection. Interestingly, Negri bodies and several other viral replication compartments have been shown to arise from a liquid-liquid phase separation process and, thus, constitute a new class of liquid organelles. This is a paradigm shift in the field of virus replication. Here, we review the different aspects of membrane-less virus replication compartments with a focus on the Mononegavirales order and discuss their interactions with the host cell machineries and the cytoskeleton. We particularly examine the interplay between viral factories and the cellular innate immune response, of which several components also form membrane-less condensates in infected cells.


Assuntos
Corpos de Inclusão Viral/genética , Raiva/genética , Compartimentos de Replicação Viral , Replicação Viral/genética , Membrana Celular/genética , Corpos de Inclusão Viral/virologia , Raiva/virologia , Vírus da Raiva/genética , Vírus da Raiva/patogenicidade , Proteínas Virais/genética
4.
PLoS One ; 15(3): e0229667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32119716

RESUMO

Inclusion body disease (IBD) is caused by reptarenaviruses and constitutes one of the most notorious viral diseases in snakes. Although central nervous system disease and various other clinical signs have been attributed to IBD in boid and pythonid snakes, studies that unambiguously reveal the clinical course of natural IBD and reptarenavirus infection are scarce. In the present study, the prevalence of IBD and reptarenaviruses in captive snake collections and the correlation of IBD and reptarenavirus infection with the clinical status of the sampled snakes were investigated. In three IBD positive collections, long-term follow-up during a three- to seven-year period was performed. A total of 292 snakes (178 boas and 114 pythons) from 40 collections in Belgium were sampled. In each snake, blood and buffy coat smears were evaluated for the presence of IBD inclusion bodies (IB) and whole blood was tested for reptarenavirus RNA by RT-PCR. Of all tested snakes, 16.5% (48/292) were positive for IBD of which all were boa constrictors (34.0%; 48/141) and 17.1% (50/292) were reptarenavirus RT-PCR positive. The presence of IB could not be demonstrated in any of the tested pythons, while 5.3% (6/114) were reptarenavirus positive. In contrast to pythons, the presence of IB in peripheral blood cells in boa constrictors is strongly correlated with reptarenavirus detection by RT-PCR (P<0.0001). Although boa constrictors often show persistent subclinical infection, long-term follow-up indicated that a considerable number (22.2%; 6/27) of IBD/reptarenavirus positive boas eventually develop IBD associated comorbidities.


Assuntos
Boidae/metabolismo , Infecções por Citomegalovirus/epidemiologia , Corpos de Inclusão/metabolismo , Animais , Animais de Zoológico , Arenaviridae/patogenicidade , Bélgica/epidemiologia , Comorbidade , Estudos Transversais , Corpos de Inclusão/fisiologia , Corpos de Inclusão Viral/genética , Prevalência , RNA Viral/genética , Serpentes/genética
5.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30728259

RESUMO

A clinical isolate of measles virus (MeV) bearing a single amino acid alteration in the viral fusion protein (F; L454W) was previously identified in two patients with lethal sequelae of MeV central nervous system (CNS) infection. The mutation dysregulated the viral fusion machinery so that the mutated F protein mediated cell fusion in the absence of known MeV cellular receptors. While this virus could feasibly have arisen via intrahost evolution of the wild-type (wt) virus, it was recently shown that the same mutation emerged under the selective pressure of small-molecule antiviral treatment. Under these conditions, a potentially neuropathogenic variant emerged outside the CNS. While CNS adaptation of MeV was thought to generate viruses that are less fit for interhost spread, we show that two animal models can be readily infected with CNS-adapted MeV via the respiratory route. Despite bearing a fusion protein that is less stable at 37°C than the wt MeV F, this virus infects and replicates in cotton rat lung tissue more efficiently than the wt virus and is lethal in a suckling mouse model of MeV encephalitis even with a lower inoculum. Thus, either during lethal MeV CNS infection or during antiviral treatment in vitro, neuropathogenic MeV can emerge, can infect new hosts via the respiratory route, and is more pathogenic (at least in these animal models) than wt MeV.IMPORTANCE Measles virus (MeV) infection can be severe in immunocompromised individuals and lead to complications, including measles inclusion body encephalitis (MIBE). In some cases, MeV persistence and subacute sclerosing panencephalitis (SSPE) occur even in the face of an intact immune response. While they are relatively rare complications of MeV infection, MIBE and SSPE are lethal. This work addresses the hypothesis that despite a dysregulated viral fusion complex, central nervous system (CNS)-adapted measles virus can spread outside the CNS within an infected host.


Assuntos
Sistema Nervoso Central/virologia , Encefalite Viral , Corpos de Inclusão Viral , Pulmão/virologia , Vírus do Sarampo/fisiologia , Sarampo , Mutação de Sentido Incorreto , Proteínas Virais de Fusão , Replicação Viral , Substituição de Aminoácidos , Animais , Sistema Nervoso Central/metabolismo , Chlorocebus aethiops , Modelos Animais de Doenças , Encefalite Viral/genética , Encefalite Viral/metabolismo , Encefalite Viral/transmissão , Humanos , Corpos de Inclusão Viral/genética , Corpos de Inclusão Viral/metabolismo , Pulmão/metabolismo , Sarampo/metabolismo , Sarampo/transmissão , Camundongos , Camundongos Transgênicos , Sigmodontinae , Células Vero , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
6.
Appl Environ Microbiol ; 83(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28500037

RESUMO

The relatively low infectivity of baculoviruses to their host larvae limits their use as insecticidal agents on a larger scale. In the present study, a novel strategy was developed to efficiently embed foreign proteins into Autographa californica multiple nucleopolyhedrovirus (AcMNPV) occlusion bodies (OBs) to achieve stable expression of foreign proteins and to improve viral infectivity. A recombinant AcMNPV bacmid was constructed by expressing the 150-amino-acid (aa) N-terminal segment of polyhedrin under the control of the p10 promoter and the remaining C-terminal 95-aa segment under the control of the polyhedrin promoter. The recombinant virus formed OBs in Spodoptera frugiperda 9 cells, in which the occlusion-derived viruses were embedded in a manner similar to that for wild-type AcMNPV. Next, the 95-aa polyhedrin C terminus was fused to enhanced green fluorescent protein, and the recombinant AcMNPV formed fluorescent green OBs and was stably passaged in vitro and in vivo The AcMNPV recombinants were further modified by fusing truncated Agrotis segetum granulovirus enhancin or truncated Cydia pomonella granulovirus ORF13 (GP37) to the C-terminal 95 aa of polyhedrin, and both recombinants were able to form normal OBs. Bioactivity assays indicated that the median lethal concentrations of these two AcMNPV recombinants were 3- to 5-fold lower than that of the control virus. These results suggest that embedding enhancing factors in baculovirus OBs by use of this novel technique may promote efficient and stable foreign protein expression and significantly improve baculovirus infectivity.IMPORTANCE Baculoviruses have been used as bioinsecticides for over 40 years, but their relatively low infectivity to their host larvae limits their use on a larger scale. It has been reported that it is possible to improve baculovirus infectivity by packaging enhancing factors within baculovirus occlusion bodies (OBs); however, so far, the packaging efficiency has been low. In this article, we describe a novel strategy for efficiently embedding foreign proteins into AcMNPV OBs by expressing N- and C-terminal (dimidiate) polyhedrin fragments (150 and 95 amino acids, respectively) as fusions to foreign proteins under the control of the p10 and polyhedrin promoters, respectively. When this strategy was used to embed an enhancing factor (enhancin or GP37) into the baculovirus OBs, 3- to 5-fold increases in baculoviral infectivity were observed. This novel strategy has the potential to create an efficient protein expression system and a highly efficient virus-based system for insecticide production in the future.


Assuntos
Corpos de Inclusão Viral/virologia , Nucleopoliedrovírus/fisiologia , Nucleopoliedrovírus/patogenicidade , Animais , Expressão Gênica , Corpos de Inclusão Viral/genética , Corpos de Inclusão Viral/metabolismo , Larva/genética , Larva/metabolismo , Larva/virologia , Nucleopoliedrovírus/genética , Proteínas de Matriz de Corpos de Inclusão , Regiões Promotoras Genéticas , Spodoptera/genética , Spodoptera/metabolismo , Spodoptera/virologia , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Virulência
7.
J Gen Virol ; 97(11): 2926-2938, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27580912

RESUMO

Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma (MCC), a rare but aggressive skin cancer. The virus is highly prevalent: 60-80 % of adults are seropositive; however, cells permissive for MCPyV infection are unknown. Consequently, very little information about the MCPyV life cycle is available. Until recently, MCPyV replication could only be studied using a semi-permissive in vitro replication system (Neumann et al., 2011; Feng et al., 2011, Schowalter et al., 2011). MCPyV replication most likely depends on subnuclear structures such as promyelocytic leukemia protein nuclear bodies (PML-NBs), which are known to play regulatory roles in the infection of many DNA viruses. Here, we investigated PML-NB components as candidate host factors to control MCPyV DNA replication. We showed that PML-NBs change in number and size in cells actively replicating MCPyV proviral DNA. We observed a significant increase in PML-NBs in cells positive for MCPyV viral DNA replication. Interestingly, a significant amount of cells actively replicating MCPyV did not show any Sp100 expression. While PML and Daxx had no effect on MCPyV DNA replication, MCPyV replication was increased in cells depleted for Sp100, strongly suggesting that Sp100 is a negative regulator of MCPyV DNA replication.


Assuntos
Carcinoma de Célula de Merkel/metabolismo , Corpos de Inclusão Viral/metabolismo , Poliomavírus das Células de Merkel/fisiologia , Infecções por Polyomavirus/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Infecções Tumorais por Vírus/metabolismo , Replicação Viral , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/virologia , Replicação do DNA , DNA Viral/genética , DNA Viral/metabolismo , Humanos , Corpos de Inclusão Viral/genética , Corpos de Inclusão Viral/virologia , Poliomavírus das Células de Merkel/genética , Infecções por Polyomavirus/genética , Infecções por Polyomavirus/virologia , Proteína da Leucemia Promielocítica/genética , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/virologia
8.
J Biol Chem ; 291(31): 16138-49, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27226560

RESUMO

Synaptogyrin-2 is a non-neuronal member of the synaptogyrin family involved in synaptic vesicle biogenesis and trafficking. Little is known about the function of synaptogyrin-2. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease characterized by high fever, thrombocytopenia, and leukocytopenia with high mortality, caused by a novel tick-borne phlebovirus in the family Bunyaviridae. Our previous studies have shown that the viral nonstructural protein NSs forms inclusion bodies (IBs) that are involved in viral immune evasion, as well as viral RNA replication. In this study, we sought to elucidate the mechanism by which NSs formed the IBs, a lipid droplet-based structure confirmed by NSs co-localization with perilipin A and adipose differentiation-related protein (ADRP). Through a high throughput screening, we identified synaptogyrin-2 to be highly up-regulated in response to SFTS bunyavirus (SFTSV) infection and to be a promoter of viral replication. We demonstrated that synaptogyrin-2 interacted with NSs and was translocated into the IBs, which were reconstructed from lipid droplets into large structures in infection. Viral RNA replication decreased, and infectious virus titers were lowered significantly when synaptogyrin-2 was silenced in specific shRNA-expressing cells, which correlated with the reduced number of the large IBs restructured from regular lipid droplets. We hypothesize that synaptogyrin-2 is essential to promoting the formation of the IBs to become virus factories for viral RNA replication through its interaction with NSs. These findings unveil the function of synaptogyrin-2 as an enhancer in viral infection.


Assuntos
Infecções por Bunyaviridae/metabolismo , Phlebovirus/fisiologia , Sinaptogirinas/metabolismo , Doenças Transmitidas por Carrapatos/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Animais , Infecções por Bunyaviridae/genética , Chlorocebus aethiops , Células HeLa , Humanos , Corpos de Inclusão Viral/genética , Corpos de Inclusão Viral/metabolismo , Corpos de Inclusão Viral/virologia , RNA Viral/biossíntese , RNA Viral/genética , Sinaptogirinas/genética , Doenças Transmitidas por Carrapatos/genética , Células Vero , Proteínas não Estruturais Virais/genética
9.
Virology ; 476: 26-36, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25506670

RESUMO

Cauliflower mosaic virus gene VI product (P6) is an essential protein that forms cytoplasmic, inclusion bodies (IBs). P6 contains four regions involved in self-association, termed D1-D4. D3 binds to D1, along with D4 and contains a spacer region (termed D3b) between two RNA-binding domains. Here we show D3b binds full-length P6 along with D1 and D4. Full-length P6s harboring single amino acid substitutions within D3b showed reduced binding to both D1 and D4. Full-length P6s containing D3b mutations and fused with green fluorescent protein formed inclusion-like bodies (IL-Bs) when expressed in Nicotiana benthamiana leaves. However, mutant P6s with reduced binding to D1 and D4, showed smaller IL-Bs, than wild type. Likewise, viruses containing these mutations showed a decrease in inoculated leaf viral DNA levels and reduced efficiency of systemic infection. These data suggest that mutations influencing P6 self-association alter IB formation and reduce virus infection.


Assuntos
Caulimovirus/metabolismo , Corpos de Inclusão Viral/metabolismo , Doenças das Plantas/virologia , Transativadores/química , Transativadores/genética , Caulimovirus/química , Caulimovirus/genética , Caulimovirus/patogenicidade , Corpos de Inclusão Viral/genética , Mutação , Estrutura Terciária de Proteína , Transativadores/metabolismo , Virulência
10.
PLoS One ; 8(11): e78834, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223853

RESUMO

A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus is being studied as a possible biological insecticide. This virus exists as a mixture of complete and deletion genotypes; the latter depend on the former for the production of an essential per os transmission factor (pif1) in coinfected cells. We hypothesized that the virus population was structured to account for the prevalence of pif1 defector genotypes, so that increasing the abundance of pif1 produced by a cooperator genotype in infected cells would favor an increased prevalence of the defector genotype. We tested this hypothesis using recombinant viruses with pif1 expression reprogrammed at its native locus using two exogenous promoters (egt, p10) in the pif2/pif1 intergenic region. Reprogrammed viruses killed their hosts markedly faster than the wild-type and rescue viruses, possibly due to an earlier onset of systemic infection. Group success (transmission) depended on expression of pif1, but overexpression was prejudicial to group-specific transmissibility, both in terms of reduced pathogenicity and reduced production of virus progeny from each infected insect. The presence of pif1-overproducing genotypes in the population was predicted to favor a shift in the prevalence of defector genotypes lacking pif1-expressing capabilities, to compensate for the modification in pif1 availability at the population level. As a result, defectors increased the overall pathogenicity of the virus population by diluting pif1 produced by overexpressing genotypes. These results offer a new and unexpected perspective on cooperative behavior between viral genomes in response to the abundance of an essential public good that is detrimental in excess.


Assuntos
Regulação Viral da Expressão Gênica , Vírus de Insetos/genética , Nucleopoliedrovírus/genética , Proteínas Estruturais Virais/genética , Animais , Deleção de Genes , Genoma Viral/genética , Genótipo , Interações Hospedeiro-Patógeno , Corpos de Inclusão Viral/genética , Vírus de Insetos/patogenicidade , Vírus de Insetos/fisiologia , Larva/virologia , Nucleopoliedrovírus/patogenicidade , Nucleopoliedrovírus/fisiologia , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Sf9 , Spodoptera/virologia , Transcrição Gênica , Proteínas Virais/genética , Virulência/genética , Replicação Viral/genética
11.
J Virol ; 87(9): 4872-81, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23408624

RESUMO

Much of the work on the basic molecular biology of human adenoviruses has been carried out on a very limited number of the more than 60 serotypes, primarily the highly related species C viruses adenovirus type 5 (Ad5) and Ad2 and, to some extent, Ad12 of species A. Until recently, it has been widely assumed that insights obtained with these model viruses were representative of all human adenoviruses. Recent studies on the E3 ubiquitin ligase formed by the viral E1B55K and E4orf6 proteins with a cellular Cullin-based complex indicated that although all species form such a functional complex, significant variations exist in terms of complex composition and the substrates that are degraded. In the present report we conducted a comprehensive analysis of the localization of E1B55K products from representatives of six of the seven adenovirus species in the presence and the absence of the corresponding E4orf6 protein. We found that although in some species E1B55K localized in aggresomes, such was not always the case, suggesting that these structures are not necessary for the efficient degradation of substrates. In addition, differences were evident in the localization of E1B55K, although all forms readily associated with PML. Finally, Ad5 E1B55K was seen to localize in close proximity to Rab11, a marker for the endosomal recycling compartment, and both focused at the microtubule organizing center. These findings suggest that E1B55K from some species may employ the transport system utilized by the membrane recycling pathway to assemble aggresomes and the possibility that this structure might then affect recycling of cell surface components.


Assuntos
Infecções por Adenoviridae/metabolismo , Proteínas E1B de Adenovirus/metabolismo , Adenovírus Humanos/metabolismo , Núcleo Celular/metabolismo , Corpos de Inclusão Viral/metabolismo , Infecções por Adenoviridae/virologia , Proteínas E1B de Adenovirus/genética , Adenovírus Humanos/classificação , Adenovírus Humanos/genética , Evolução Biológica , Linhagem Celular , Núcleo Celular/genética , Humanos , Corpos de Inclusão Viral/genética , Proteólise , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
12.
J Virol ; 86(20): 10979-87, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22837214

RESUMO

The double-stranded RNA virus mammalian reovirus displays broad cell, tissue, and host tropism. A critical checkpoint in the reovirus replication cycle resides within viral cytoplasmic inclusions, which are biosynthetic centers of genome multiplication and new-particle assembly. Replication of strain type 3 Dearing (T3) is arrested in Madin-Darby canine kidney (MDCK) cells at a step subsequent to inclusion development and prior to formation of genomic double-stranded RNA. This phenotype is primarily regulated by viral replication protein µ2. To understand how reovirus inclusions differ in productively and abortively infected MDCK cells, we used confocal immunofluorescence and thin-section transmission electron microscopy (TEM) to probe inclusion organization and particle morphogenesis. Although no abnormalities in inclusion morphology or viral protein localization were observed in T3-infected MDCK cells using confocal microscopy, TEM revealed markedly diminished production of mature progeny virions. T3 inclusions were less frequent and smaller than those formed by T3-T1M1, a productively replicating reovirus strain, and contained decreased numbers of complete particles. T3 replication was enhanced when cells were cultivated at 31°C, and inclusion ultrastructure at low-temperature infection more closely resembled that of a productive infection. These results indicate that particle assembly in T3-infected MDCK cells is defective, possibly due to a temperature-sensitive structural or functional property of µ2. Thus, reovirus cell tropism can be governed by interactions between viral replication proteins and the unique cell environment that modulate efficiency of particle assembly.


Assuntos
Corpos de Inclusão Viral/metabolismo , Reoviridae/fisiologia , Proteínas Virais/metabolismo , Tropismo Viral , Montagem de Vírus , Replicação Viral , Animais , Linhagem Celular , Cães , Corpos de Inclusão Viral/genética , Corpos de Inclusão Viral/ultraestrutura , Células Madin Darby de Rim Canino , Camundongos , Microscopia Eletrônica de Transmissão , Fenótipo , RNA de Cadeia Dupla/metabolismo , RNA Viral/genética , Reoviridae/genética , Temperatura , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
13.
Infect Genet Evol ; 12(1): 160-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21983687

RESUMO

Human orthopoxvirus (OPV) infections in Europe are usually caused by cowpox virus (CPXV). The genetic heterogeneity of CPXVs may in part be due to recombination with other OPV species. We describe the characterization of an atypical CPXV (CPXV-No-H2) isolated from a human patient in Norway. CPXV-No-H2 was characterized on the basis of A-type inclusion (ATI) phenotype as well as the DNA region containing the p4c and atip open reading frames. CPXV-No-H2 produced atypical V(+/) ATI, in which virions are on the surface of ATI but not within the ATI matrix. Phylogenetic analysis showed that the atip gene of CPXV-No-H2 clustered closely with that of ectromelia virus (ECTV) with a bootstrap support of 100% whereas its p4c gene is diverged compared to homologues in other OPV species. By recombination analysis we identified a putative crossover event at nucleotide 147, downstream the start of the atip gene. Our results suggest that CPXV-No-H2 originated from a recombination between CPXV and ECTV. Our findings are relevant to the evolution of OPVs.


Assuntos
Vírus da Varíola Bovina/genética , Vírus da Ectromelia/genética , Filogenia , Proteínas Virais/genética , Adolescente , Sequência de Bases , Vírus da Varíola Bovina/isolamento & purificação , Primers do DNA , DNA Viral/genética , Humanos , Corpos de Inclusão Viral/genética , Corpos de Inclusão Viral/metabolismo , Masculino , Dados de Sequência Molecular , Noruega , Fases de Leitura Aberta , Fenótipo , Recombinação Genética , Análise de Sequência de DNA , Vírion/genética
14.
J Virol ; 86(2): 1079-89, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22090113

RESUMO

Mammalian orthoreoviruses replicate and assemble in the cytosol of infected cells. A viral nonstructural protein, µNS, forms large inclusion-like structures called viral factories (VFs) in which assembling viral particles can be identified. Here we examined the localization of the cellular chaperone Hsc70 and found that it colocalizes with VFs in infected cells and also with viral factory-like structures (VFLs) formed by ectopically expressed µNS. Small interfering RNA (siRNA)-mediated knockdown of Hsc70 did not affect the formation or maintenance of VFLs. We further showed that dominant negative mutants of Hsc70 were also recruited to VFLs, indicating that Hsc70 recruitment to VFLs is independent of the chaperone function. In support of this finding, µNS was immunoprecipitated with wild-type Hsc70, with a dominant negative mutant of Hsc70, and with the minimal substrate-binding site of Hsc70 (amino acids 395 to 540). We identified a minimal region of µNS between amino acids 222 and 271 that was sufficient for the interaction with Hsc70. This region of µNS has not been assigned any function previously. However, neither point mutants with alterations in this region nor the complete deletion of this domain abrogated the µNS-Hsc70 interaction, indicating that a second portion of µNS also interacts with Hsc70. Taken together, these findings suggest a specific chaperone function for Hsc70 within viral factories, the sites of reovirus replication and assembly in cells.


Assuntos
Proteínas de Choque Térmico HSC70/metabolismo , Corpos de Inclusão Viral/metabolismo , Orthoreovirus de Mamíferos/metabolismo , Infecções por Reoviridae/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Proteínas de Choque Térmico HSC70/genética , Humanos , Corpos de Inclusão Viral/genética , Corpos de Inclusão Viral/virologia , Orthoreovirus de Mamíferos/química , Orthoreovirus de Mamíferos/genética , Ligação Proteica , Transporte Proteico , Infecções por Reoviridae/virologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
15.
Virus Res ; 152(1-2): 96-103, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20600394

RESUMO

Mal de Río Cuarto virus (MRCV) is a plant virus of the genus Fijivirus within the family Reoviridae that infects several monocotyledonous species and is transmitted by planthoppers in a persistent and propagative manner. Other members of the family replicate in viral inclusion bodies (VIBs) termed viroplasms that are formed in the cytoplasm of infected plant and insect cells. In this study, the protein coded by the first ORF of MRCV segment S9 (P9-1) was shown to establish cytoplasmic inclusion bodies resembling viroplasms after transfection of Spodoptera frugiperda insect cells. In accordance, MRCV P9-1 self-associates giving rise to high molecular weight complexes when expressed in bacteria. Strong self-interaction was also evidenced by yeast two-hybrid assays. Furthermore, biochemical characterization showed that MRCV P9-1 bound single stranded RNA and had ATPase activity. Finally, the MRCV P9-1 region required for the formation of VIB-like structures was mapped to the protein carboxy-terminal half. This extensive functional and biochemical characterization of MRCV P9-1 revealed further similarities between plant and animal reovirus viroplasm proteins.


Assuntos
Corpos de Inclusão Viral/metabolismo , Reoviridae/metabolismo , Spodoptera/virologia , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Animais , Corpos de Inclusão Viral/química , Corpos de Inclusão Viral/genética , Fases de Leitura Aberta , Reoviridae/química , Reoviridae/genética , Proteínas Virais/química , Proteínas Virais/genética
16.
J Gen Virol ; 91(Pt 9): 2322-30, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20505010

RESUMO

The minimal virus requirements for the generation of influenza virus-like particle (VLP) assembly and budding were reassessed. Using neuraminidase (NA) from the H5N1 and H1N1 subtypes, it was found that the expression of NA alone was sufficient to generate and release VLPs. Biochemical and functional characterization of the NA-containing VLPs demonstrated that they were morphologically similar to influenza virions. The NA oligomerization was comparable to that of the live virus, and the enzymic activity, whilst not required for the release of NA-VLPs, was preserved. Together, these findings indicate that NA plays a key role in virus budding and morphogenesis, and demonstrate that NA-VLPs represent a useful tool in influenza research.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Neuraminidase/fisiologia , Proteínas Virais/fisiologia , Montagem de Vírus/fisiologia , Liberação de Vírus/fisiologia , Linhagem Celular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/fisiologia , Humanos , Corpos de Inclusão Viral/genética , Corpos de Inclusão Viral/fisiologia , Corpos de Inclusão Viral/ultraestrutura , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/ultraestrutura , Virus da Influenza A Subtipo H5N1/ultraestrutura , Microscopia Eletrônica de Transmissão , Neuraminidase/genética , Transfecção , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/fisiologia , Proteínas Virais/genética , Montagem de Vírus/genética , Liberação de Vírus/genética
17.
Virology ; 392(2): 230-7, 2009 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-19651423

RESUMO

Homologs of Autographa californica nucleopolyhedrovirus ORF43 (Ac43) are found in all group I and most group II NPVs, but their functions remain unknown. In Bombyx mori NPV (BmNPV)-infected BmN cells, Bm34, a BmNPV homolog of Ac43, is expressed as a late gene and its product is localized in the nucleus. To examine the role of Bm34 during BmNPV infection, we constructed a Bm34 deletion mutant (BmORF34D) and characterized its infectivity in BmN cells and B. mori larvae. BmORF34D produced far fewer occlusion bodies (OBs) in BmN cells as compared with wild-type BmNPV. This reduction is assumed to be mainly due to the transcriptional down-regulation of two genes, very late expression factor (vlf-1) and few polyhedra (fp25K), both of which are required for efficient polyhedrin expression. Larval bioassays also revealed that Bm34 accelerates death of B. mori larvae. These results suggest that Bm34 is required for efficient late and very late gene expression.


Assuntos
Proteínas do Nucleocapsídeo/genética , Nucleopoliedrovírus/genética , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas Virais/genética , Animais , Bombyx/virologia , Regulação para Baixo , Regulação Viral da Expressão Gênica , Corpos de Inclusão Viral/genética , Larva/virologia , Nucleopoliedrovírus/fisiologia , Regiões Promotoras Genéticas , Deleção de Sequência , Replicação Viral
18.
J Gen Virol ; 90(Pt 9): 2147-56, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19458173

RESUMO

Although the replication cycle of parainfluenza virus type 5 (PIV5) is initially severely impaired in cells in an interferon (IFN)-induced antiviral state, the virus still targets STAT1 for degradation. As a consequence, the cells can no longer respond to IFN and after 24-48 h, they go out of the antiviral state and normal virus replication is established. Following infection of cells in an IFN-induced antiviral state, viral nucleocapsid proteins are initially localized within small cytoplasmic bodies, and appearance of these cytoplasmic bodies correlates with the loss of STAT1 from infected cells. In situ hybridization, using probes specific for the NP and L genes, demonstrated the presence of virus genomes within these cytoplasmic bodies. These viral cytoplasmic bodies do not co-localize with cellular markers for stress granules, cytoplasmic P-bodies or autophagosomes. Furthermore, they are not large insoluble aggregates of viral proteins and/or nucleocapsids, as they can simply and easily be dispersed by 'cold-shocking' live cells, a process that disrupts the cytoskeleton. Given that during in vivo infections, PIV5 will inevitably infect cells in an IFN-induced antiviral state, we suggest that these cytoplasmic bodies are areas in which PIV5 genomes reside whilst the virus dismantles the antiviral state of the cells. Consequently, viral cytoplasmic bodies may play an important part in the strategy that PIV5 uses to circumvent the IFN system.


Assuntos
Citoplasma/imunologia , Genoma Viral , Corpos de Inclusão Viral/imunologia , Interferons/imunologia , Vírus da Parainfluenza 5/genética , Infecções por Rubulavirus/imunologia , Animais , Linhagem Celular , Chlorocebus aethiops , Citoplasma/genética , Citoplasma/virologia , Humanos , Corpos de Inclusão Viral/genética , Interferons/genética , Vírus da Parainfluenza 5/imunologia , Vírus da Parainfluenza 5/fisiologia , Infecções por Rubulavirus/genética , Infecções por Rubulavirus/virologia , Células Vero , Replicação Viral
19.
J Cell Biol ; 180(3): 549-61, 2008 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-18250195

RESUMO

TRIM5 proteins constitute a class of restriction factors that prevent host cell infection by retroviruses from different species. TRIM5alpha restricts retroviral infection early after viral entry, before the generation of viral reverse transcription products. However, the underlying restriction mechanism remains unclear. In this study, we show that during rhesus macaque TRIM5alpha (rhTRIM5alpha)-mediated restriction of HIV-1 infection, cytoplasmic HIV-1 viral complexes can associate with concentrations of TRIM5alpha protein termed cytoplasmic bodies. We observe a dynamic interaction between rhTRIM5alpha and cytoplasmic HIV-1 viral complexes, including the de novo formation of rhTRIM5alpha cytoplasmic body-like structures around viral complexes. We observe that proteasome inhibition allows HIV-1 to remain stably sequestered into large rhTRIM5alpha cytoplasmic bodies, preventing the clearance of HIV-1 viral complexes from the cytoplasm and revealing an intermediate in the restriction process. Furthermore, we can measure no loss of capsid protein from viral complexes arrested at this intermediate step in restriction, suggesting that any rhTRIM5alpha-mediated loss of capsid protein requires proteasome activity.


Assuntos
Infecções por HIV/metabolismo , HIV-1/metabolismo , Imunidade Inata/fisiologia , Corpos de Inclusão Viral/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Citoplasma/virologia , Infecções por HIV/genética , Infecções por HIV/fisiopatologia , HIV-1/genética , Células HeLa , Humanos , Corpos de Inclusão Viral/genética , Corpos de Inclusão Viral/ultraestrutura , Macaca mulatta , Substâncias Macromoleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Proteínas/genética , Ubiquitina-Proteína Ligases , Internalização do Vírus
20.
J Biol Chem ; 283(9): 5267-75, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18089571

RESUMO

The mRNAs encoding the vaccinia virus F17 protein and the cowpox A-type inclusion protein are known to possess sequence-homogeneous 3' ends, generated by a post-transcriptional cleavage event. By using partially purified extracts, we have previously shown that the same factor probably cleaves both the F17 and A-type inclusion protein transcripts and that the cleavage factor is either virus-coded or virus-induced during the post-replicative phase of virus replication. In this study, we have purified the cleavage factor from vaccinia-infected HeLa cells using column chromatography and gel filtration. The factor eluted from the gel filtration column with an apparent molecular mass of approximately 440 kDa. Mass spectrometric analyses of the proteins present in the peak active fractions revealed the presence of at least one vaccinia protein with a high degree of certainty, the H5R gene product. To extend this finding, extracts were prepared from HeLa cells infected with vaccinia virus overexpressing His-tagged H5, chromatographed on a nickel affinity column, and eluted using an imidazole gradient. Cleavage activity eluted with the peak of His-tagged H5. Gel filtration of the affinity-purified material further demonstrated that cleavage activity and His-tagged H5 co-chromatographed with an apparent molecular mass of 463 kDa. We therefore conclude that H5 is specifically associated with post-transcriptional cleavage of F17R transcripts. In addition, we show that dephosphorylation of a cleavage competent extract with a nonspecific phosphatase abolishes cleavage activity implying a role for phosphorylation in cleavage activity.


Assuntos
Processamento Pós-Transcricional do RNA/fisiologia , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/metabolismo , Vírus Vaccinia/metabolismo , Proteínas Virais/isolamento & purificação , Proteínas Virais/metabolismo , Células HeLa , Humanos , Corpos de Inclusão Viral/genética , Corpos de Inclusão Viral/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Transcrição Gênica/fisiologia , Vírus Vaccinia/genética , Proteínas Virais/genética , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...